#ex1 #Too descriptive #ex 2 def gender_features(word): return { 'suffix1': word[-1:], 'suffix2': word[-2:], 'startswith': word[0].lower(), 'length':len(word), 'first2char':word[0:2].lower(), 'containsyn':'yn' in word } names = ([(name, 'male') for name in names.words('male.txt')] + [(name, 'female') for name in names.words('female.txt')]) random.shuffle(names) featuresets = [(gender_features(n), g) for (n,g) in names] train_set = nltk.apply_features(gender_features, names[500:]) devtest_set = nltk.apply_features(gender_features, names[500:1000]) test_set = nltk.apply_features(gender_features, names[1000:len(names)]) classifier = nltk.NaiveBayesClassifier.train(train_set) p(nltk.classify.accuracy(classifier, test_set)) # 81% accuracy p(classifier.show_most_informative_features(5))
Friday, June 26, 2015
Natural Language Processing with Python: Chapter 6 Excercise Answers
Subscribe to:
Post Comments (Atom)
If possible, could you please post the answers for the all chapters?
ReplyDeleteOr share the answers through e-mail(psa064@gmail.com)